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The concept of the density of modes has been lacking a precise mathematical definition for a finite-size
structure. With the explosive growth in the fabrication of photonic crystals and nanostructures, which are
inherently finite in size, a workable definition is imperative. We give a simple and physically intuitive defini-
tion of the electromagnetic density of modes based on the Green’s function for a generic three-dimensional
open cavity filled with a linear, isotropic, dielectric material.
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Several attempts have been made to generalize the notion
of the local density of modes(LDOM)—or local density of
states—and the density of modes(DOM)—or density of
states—to the case of open cavities—i.e., structure of finite
size where electromagnetic energy can flow in and out of the
volume bounded by the surfaceS of the cavity[1–6]. Quite
surprisingly, the concept of the density of states for a finite-
size structure still lacks a simple, concise definition. In the
words of Felbacq and Smaali,“Such notions as that of the
density of states or local density of states, which are crucial
in the description of the coupling between field and matter,
cannot be straightforwardly defined for finite structures”[5].
In our estimation, the most likely reason why the concepts of
the LDOM and DOM have not yet found straightforward
extensions to the case of three-dimensional(3D), finite struc-
tures is probably due to the fact that most approaches have
focused on the mathematical rather than the basic physical
aspects of the problem. Furthermore, due to their basic sim-
plicity, 1D and 2D open cavities filled with nonabsorbing
materials remain the subject of choice of most researchers.

If we have a closed cavity such that the field vanishes at
the edges or a cavity where periodic boundary conditions can
be applied(such as a multilayer stack of infinite length),
filled with a nonabsorbing medium, we can expect that the
electromagnetic energy will be conserved inside the cavity,
and the problem in Hermitian. In this case, the LDOM stands
for the number of eigenmodes per unit volume and unit fre-
quency at a pointrW inside the cavity. If the electromagnetic
field can be specified by a single field component(TE or TM
polarization), then the scalar Green’s function can be ex-
panded in terms of the eigenmodes of the cavity and the
LDOM can be calculated through the imaginary part of the
scalar Green’s function:rvsrWd~−ImfGvsrW ,rWdg [4,7,8]. The
DOM is then defined as the average LDOM inside the vol-
umeV of the cavity. So we ask(i) what happens if the cavity
is open, such that electromagnetic energy can flow in and out
of the volume bounded by the surfaceS of the cavity?(ii )
What happens if the cavity is filled with an absorbing mate-

rial? These questions have no easy answers fundamentally
because the electromagnetic problem is no longer Hermitian
and the cavity does not admit eigenmodes in the usual sense
of the word. As a consequence, the Green’s function does not
admit a straightforward expansion in terms the cavity modes
[7,9] and the very notion of the LDOM would seem to lose
its validity. In other words, can a LDOM still be defined
when the problem is not Hermitian(the case of open cavity
or material absorption), and what is its physical meaning in
this case[10]?

To answer these deceptively simple but crucial questions
we go back to the usual starting place—that is, Maxwell’s
equations, which we write in MKSA units, in the frequency
domain, assuming a harmonic time dependence of the type
es−iv td and nonmagnetic materialssmr >1d:

¹W 3 EW v = ivBW v, s1ad

¹W 3 BW v = m0JWvsrWd − i
v

c2«vsrWdEW v, s1bd

whereJWvsrWd is a complex current density,«vsrWd is the spa-
tially dependent, relative, complex dielectric function of the
material, and«vsrWd=«v

RsrWd+ i«v
I srWd. Note that we use a ge-

neric, linear, and isotropic dielectric material. Equations(1)
describe the steady-state case; i.e., we assume that both the

electromagnetic field and the sourceJWvsrWd oscillate with a
harmonic time dependence. Taking the curl of Eq.(1a) and
using Eq.(1b), we arrive at the following equation for the
electric field:

− ¹W 3 ¹W 3 EW v +
v2

c2 «vsrWdEW v = − ivm0JWv. s2d

Let us now consider a cavity of volumeV and surfaceSfilled
with a dielectric material of dielectric function«vsrWd, where

a known current densityJWvsrWd is present. Multiplying Eq.(2)

by EW v
* , integrating over the volumeV, using the vector ana-

log of Green’s first identity[11], and using Eq.(1a), we
arrive at the equation*Electronic address: giuseppe.daguanno@timedomain.com
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−
1

2
ReE

V
JWv ·EW v

* dV=
1

2
v«0E

V
«v

I uEW vu2dV

+
1

2
ReE

S
FEW v

* 3 BW v

m0
G · n̂dS. s3d

Equation(3) makes a statement about energy conservation. It
says that the mean electromagnetic power emitted(or in any

case lost) by the sourceJWv (left-hand side) is equal to the
mean power dissipated in the volumeV (first term on right-
hand side), plus the mean power flowing through the surface
S (second term on right-hand side) or

W̄emitted= W̄dissipated inV + W̄flowing through S. s4d

The assumption of a steady state implies the presence of a
generator, or forcing term, in order to maintain the current
density under harmonic oscillation. In short, this means that

W̄emitted=−1/2 ReeVJWv ·EW v
* dV=hW̄generator, where 0,h,1 is

the efficiency of the generator.
Let us now suppose that the source of the electromagnetic

radiation is located in a very small region inside the cavity
and that it is centered near the pointrW0. We emphasize that
we are not discussing an extended source, but a very well
localized one. Let us also suppose that the source is a simple

electric dipole of momentpW0. It follows that JWvsrWd=
−ivpW0dsrW−rW0d (point dipole), a situation which is depicted in
Fig. 1. The mean power emitted by the dipole can be calcu-
lated by using Eq.(3) and by exploiting the properties of
Dirac’s d function:

WemittedsrW0d = −
v3m0upW0u2

2
ImfGv,x̂x̂srW0,rW0dg, s5d

whereGv,x̂x̂srW0,rW0d is thex̂x̂ component of the dyadic Green’s

function Ḡ
¯

vsrW ,rW0d calculated atrW=rW0, where x̂ is the unit
vector along which the dipole is oriented. The dyadic
Green’s function satisfies the equation

− ¹W 3 ¹W 3 Ḡ
¯

vsrW,rW0d +
v2

c2 «vsrWdḠ¯vsrW,rW0d = Ī
¯
dsrW − rW0d, s6d

where

«vsrWd = H«v
RsrWd + i«v

I srWd in V,

«out outsideV,

and «out is the real dielectric constant of the homogeneous
medium that surrounds the cavity. The appropriate boundary
conditions that apply in our case are those of an outgoing
wave; i.e., no electromagnetic energy is flowing from outside

into the cavity through the surfaceS. Here Ī
¯

is the unit dy-
adic. As a particular case, from Eq.(5) we can calculate the
power emitted by a point dipole in free space. In that case
and for the boundary conditions just described, the dyadic
Green’s function solution of Eq.(6) is [12,13]

G
v,âb̂

free spacesrW,rW0d = −
1

4p
Fdab +

1

k0
2

]2

] a ] b
Gexpfik0urW − rW0ug

urW − rW0u
,

sa,bd = x,y,z, s7d

wherek0=v /c is the vacuum wave vector anddab is Kro-
necker’s delta. From Eqs.(5) and (7) we obtain

W̄emitted,free space=
v4m0upW0u2

12pc
. s8d

This is the power emitted, or lost, by an electric dipole in
free space, and it is the classical result we are all familiar
with [14]. Now, from Eq.(5) and (8), we obtain

W̄emittedsrWd

W̄emitted,free space

= −
6pc

v
ImfGv,x̂x̂srW,rWdg. s9d

From Eq.(9) we deduce that the mean power emitted by a
harmonically driven oscillating electric dipole oriented along
x̂ and located at a positionrW inside a generic, 3D cavity of
volumeV, filled with a generic linear and isotropic dielectric
material, is modified with respect to the power emitted by the
same dipole in free space by a factor proportional to the
imaginary part of thex̂x̂ component of the dyadic Green’s
function. Note that this factor does not depend on the
strength of the dipole momentupW0u, but still depends on its
orientation, a fact that is often neglected, or unneeded, in
lower-dimensional systems.

What one should generally require from the LDOM is that
(i) it account for the modification of dipole emission rates
with respect to emission rates in vacuum and(ii ) it give the
correct limiting value for the DOM of free space when cal-
culated for an empty cavity whose dimensions go to infinity.
The simplest way to satisfy these two requirements is to
write the LDOM as

FIG. 1. Schematic representation of a point dipole embedded in
a cavity of volumeV and surfaceS filled with a generic linear and
isotropic dielectric material.
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rvsrWd ; rv,free space
W̄emittedsrWd

W̄emitted,free space

= −
6pc

v
rv,free spaceImfGv,x̂x̂srW,rWdg. s10d

Consequently, the DOM will be

rv ; rv,free space
kW̄emittedsrWdl

W̄emitted,free space

= −
6pc

v
rv,free spacekImfGv,x̂x̂srW,rWdgl, s11d

where the symbolk l denotes a spatial average over the vol-
ume V of the cavity. We note that for a closed cavity filled

with a nonabsorbing materialW̄flowing through S>0, and

W̄dissipated inV>0. From Eqs.(4) and (10) it follows that
rvsrWd>0; i.e., dipole emission rates are inhibited[15]. In this
regard, we note that the quantum spontaneous emission rate
of an atom embedded in a dielectric microcavity is propor-
tional to the total classical radiation energy of a correspond-
ing dipole current in the same dielectric microcavity[16,17].

In the case of an open cavity filled with a nonabsorbing
material we arrive at anoperational definition of the LDOM.
From Eq. (4), in the case of no absorption, we have

W̄emitted=W̄flowing through S, and the LDOM is directly propor-
tional to the mean power radiated by a harmonically driven
point dipole:

rvsrWd ; rv,free space

W̄srWdflowing through S

W̄emitted,free space

,

where W̄srWdflowing through S is a physical quantity that can be
directly measured in an experiment.

Our discussion shows that despite the prevailing view,
concepts of the LDOM and DOM can easily be defined and
understood for a finite, 3D, open cavity filled with a generic
linear and isotropic dielectric material in terms of theemis-
sion rates of a single-point dipole, and not extended sources,
as is normally done in lower-dimensional systems, where the
symmetry of the source is usually exploited to reduce the
complexity of the problem. By extended source here we
mean a dipole layer that may be found inside 1D multilayer
stacks[1–3,6] or a dipole current that runs along an infinitely
long wire in the so-called “forest of rods”[4,5]. In this latter
context, Fussellet al. [18] have recently calculated the
Green’s dyadic for a 2D photonic crystal composed of a fi-
nite cluster of circular cylinders having infinite length, in the
presence of a pointlike source. Although this represents re-
markable progress from a computational point of view, the
potential to obtain strong inhibition of the dipole emission in
this class of photonic crystals is limited by the absence of a
complete 3D photonic band gap. While the absence of a
second and/or third dimension can certainly render the prob-
lem easier to be solved analytically or numerically, some

caution should be exercised in extending the meaning of in-
trinsically three-dimensional quantities, such as the LDOM,
to lower-dimensional problems. We will expand on this sub-
ject separately. Finally, when the dielectric is nonabsorbing,
both the LDOM and DOM become directly measurable
physical quantities by monitoring the power radiated by a
point dipole outside the surfaceS.

Finally, a note about electric multipole and magnetic di-
pole sources. In this work we have explicitly referred to the
case of a simple point electric dipole. Should the source con-
sist of an electric quadrupole(dipole forbidden), for ex-
ample, or even a magnetic dipole, things then appear to be-
come more complex from a computational point of view.
Conceptually, however, the problem retains its simplicity. In
fact, our results suggest that the LDOM may be generally
defined as

rvsrWd ; rv,free space
W̄emittedsrWd

W̄emitted,free space

where W̄emittedsrWd is the mean power emitted by the point
source, regardless of its specific nature. What is also remark-
able is that while in the case of an electric dipole the LDOM
can be directly linked to the imaginary part of the Green’s
dyadic[see Eq.(10)], in other cases the connection with the
Green’s dyadic is not obvious, and its application should be
explored on a case-by-case basis, depending on the particular
nature of the source. Of course, whether a connection to a
Green function can be made or not is only relevant from a
mathematical point of view. Such a connection, or lack
thereof, would take nothing away from the simplicity of the
concept that we advance here: that for finite, 3D structures
the LDOM can always be thought as being proportional to
the ratio between the power emitted by a point source lo-
cated inside the cavity and the power emitted by the same
point source in free space.

In conclusion, we have shown that the physical concepts
of the LDOM and DOM can be extended to 3D structures of
finite size without conceptual difficulties. The results suggest
that the LDOM is directly linked to the power emitted by a
point source inside the cavity, regardless of the particular
nature of the source. On the other hand, while the extension
to 3D presents us with few conceptual obstacles, calculation
of the Green’s dyadic function found in Eq.(6) for the
electric-dipole case or the calculation of the power emitted
by the point source in the most general case is a task that can
only be accomplished numerically, an undertaking that takes
nothing away from the simplicity of the underlying concepts
of the DOM and LDOM.
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